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Abstract 

We study the effect of algorithmic trading (AT) intensity on equity market liquidity, short-term 
volatility, and informational efficiency between 2001 and 2011 in 42 equity markets around the 
world. On average, AT improves liquidity and informational efficiency but increases volatility. 
We can attribute the AT-related increase in volatility neither to more “good” volatility that would 
arise from faster price discovery nor to algorithmic traders’ inclination to enter the market when 
volatility is high. On the contrary, these volatility-seeking traders are associated with declines in 
market quality. Our results are surprisingly consistent across markets and thus across a wide 
range of AT practices. But results vary in the cross-section of stocks. In contrast to the average 
effect, greater AT intensity reduces liquidity and worsens the volatility increase in the smallest 
tercile of stocks. Finally, AT becomes less beneficial when market making is difficult.  
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Abstract 

We study the effect of algorithmic trading (AT) intensity on equity market liquidity, short-term 
volatility, and informational efficiency between 2001 and 2011 in 42 equity markets around the 
world. On average, AT improves liquidity and informational efficiency but increases volatility. 
We can attribute the AT-related increase in volatility neither to more “good” volatility that would 
arise from faster price discovery nor to algorithmic traders’ inclination to enter the market when 
volatility is high. On the contrary, these volatility-seeking traders are associated with declines in 
market quality. Our results are surprisingly consistent across markets and thus across a wide 
range of AT practices. But results vary in the cross-section of stocks. In contrast to the average 
effect, greater AT intensity reduces liquidity and worsens the volatility increase in the smallest 
tercile of stocks. Finally, AT becomes less beneficial when market making is difficult. 
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1. Introduction  

By most accounts, high frequency trading (HFT) represents most of the trading volume in today’s 

markets. HFT refers to the activity of algorithms that emit orders or order cancellations, reacting within 

milliseconds to market updates or new information. Primarily because of their overall importance in terms 

of trading volume, but also because HFT strategies are neither transparent nor well understood, there is 

substantial public policy interest in the effects that HFT has on other market participants, trading 

strategies, and the quality of markets. Security-market regulators around the world actively debate 

whether and, if so, how HFT should be regulated, and place increasing scrutiny on algorithmic and high-

frequency order submission strategies and their consequences. Despite this debate and a recent flurry of 

theoretical and empirical work in this area, many questions remain unanswered.  

In this paper, we take a basic but comprehensive approach that contributes new evidence to this 

debate. We follow Hendershott, Jones, and Menkveld (2011) and construct proxies for algorithmic trading 

(AT), a precondition for HFT, from the intensity of order-related message traffic. We use eleven years of 

intraday data on security-level quotes and trades in 42 markets around the world, on average covering 

more than 21,507 firms per year. This new and comprehensive sample allows us to exploit variation in 

algorithmic trading intensity in the cross-section of stocks and in the cross-section of markets.1 

We have several objectives. First, we describe the relationship between algorithmic trading and 

market quality, measured in terms of liquidity, informational efficiency, and short-term volatility with a 

large international sample. While some studies of HFT have looked outside the U.S. (e.g., Hendershott 

and Riordan, 2013; Menkveld, 2013), they are based on relatively small samples. Even the most 

comprehensive study thus far, Hendershott, Jones, and Menkveld (2011), does not use data beyond 2006 

and its main analysis is based on a 2003 change in trading protocol. As these dates arguably precede the 

                                                       

1 Strictly speaking, high-frequency and low-latency trading refer to a subset of algorithmic trading involving 
reacting to market changes within milliseconds. HFT/LLT likely accounts for most algorithmic message traffic and 
volume. Because our analysis of AT has implications for HFT/LLT, we often use the terms “algorithmic trading,” 
“high frequency trading,” and “low latency trading” interchangeably. 
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steep growth of HFT during the previous decade exploring the subsequent relationship between 

algorithmic trading and market quality is important.  

Second, we exploit the presence of several separate cross-sections of firms. We investigate 

whether features that are known to affect order submission strategies—such as market cap, share price, 

and idiosyncratic volatility—impact the effects of AT on market quality.  

Third, existing evidence suggests that HFT provides liquidity to other traders and that fast traders 

act as informal market makers (e.g. Brogaard et al, 2014;). However, in contrast to exchange-regulated 

market makers, informal market makers are not subject to affirmative obligations, such as requirements 

for continuous liquidity provision on both sides of the market. Therefore, it is likely that the liquidity 

provided by informal market makers varies over time, especially when market making becomes difficult. 

Anand and Venkataraman (2015) show that voluntary market makers are less likely to provide liquidity 

than exchange-designated ones under unfavorable market conditions. Kirilenko et al. (2014) provide 

evidence that high frequency traders ceased to supply liquidity during the “Flash Crash” of 2010. In this 

paper, we complement these studies by providing evidence on changes in the liquidity provision by 

algorithmic traders.  

We find that greater AT intensity is, on average, associated with more liquidity, faster price 

discovery, and greater volatility. These results control for share price, trading volume, market 

capitalization, and volatility (where appropriate), and they are remarkably consistent across different 

markets. They are robust to using other econometric models for estimation and to different measures of 

market quality.  

Importantly, we causally link AT to market quality by using the formal introduction of co-

location events as an instrument for the intensity of AT. Co-location allows fast traders to minimize data 

turnaround time by physically locating their computer hardware next to the exchange’s hardware. These 

events, which are essential for facilitating AT, represent exogenous shocks (to AT) that do not directly 

affect market quality. We develop instruments based on co-location events and use them to assess the 

effect of exogenous changes in AT. We find results consistent with our panel results. Given these 



3 
 

findings, we argue that AT causally affects market quality—more AT improves liquidity and efficiency, 

but it increases volatility.  

Our result that more intensive AT leads to greater volatility is consistent with the model by Rosu 

(2015), who find that volatility increases when more high frequency traders enter the market or when 

their information becomes more precise. Volatility is important to traders and issuers of equity securities 

and can have adverse effects on market quality through several channels. Limit orders provide liquidity to 

the market and represent options to trade for other market participants. Greater volatility makes this 

option more expensive and thus makes liquidity provision more costly. Using a different model, Ait-

Sahalia and Saglam (2013) arrive at a similar result: higher volatility leads fast traders to reduce their 

liquidity provision. Because issuers prefer more liquid markets, the potential costs of lower liquidity 

could even extend to equity issuers (Stulz, Vagias, and van Dijk, 2014). Greater volatility also increases 

price uncertainty for traders, making trading more costly for risk-averse market participants (Hasbrouck, 

2015).  

We see at least two reasons why elevated volatility could be desirable. First, the more efficient 

markets are, the faster prices change in response to new information, and the higher is price volatility. It is 

thus conceivable that the greater efficiency that is associated with more AT also produces higher desirable 

volatility. To address this issue empirically, we hold constant each stock’s level of informational 

efficiency, and still find that AT increases volatility. Therefore, it is unlikely that the AT-induced change 

in volatility is due solely the “good” volatility associated with faster price discovery. 

Second, volatility could increase when AT is more intense because some fast traders may prefer 

high-volatility environments. It is conceivable that these fast traders enter the market when volatility is 

high as a by-product of market-making strategies. In this case, high volatility could be desirable because it 

attracts additional liquidity that would be absent otherwise. We analyze this possibility empirically by 

relating AT’s effect on volatility to its contemporaneous effect on liquidity. We find that on days when 

AT is associated with high volatility, AT also induces lower liquidity. This link between volatility and 

liquidity suggests that either the same traders who generate higher volatility also cause lower liquidity or 
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that the traders attracted by high volatility take liquidity rather than provide liquidity. Either way, the AT 

activity that takes place during high-volatility episodes does not improve liquidity and is therefore not 

desirable. 

We next assess the cross-sectional differences in AT’s effect on market quality. While the 

average effect of AT on market quality is positive, we observe substantial variation in AT intensity. Thus 

understanding the cross-sectional determinants of the benefits and costs of greater AT intensity is 

important. Specifically, stocks that are larger in terms of market capitalization, have higher share prices, 

or have low volatility are also typically easier to trade. Providing liquidity in these stocks is easier, and 

the trading intensity is high enough to allow for significant algorithmic activity. Implementing high-

frequency market-making strategies in particular is likely easier in these stocks than in small, low-priced, 

or high-volatility stocks.  To analyze these issues, we divide stocks into terciles based on market cap, 

price, and volatility within each market day, and allow the effects of AT to differ across these 

characteristics. 

We find that much of the benefits of high AT intensity accrue to large, high-priced, and low-

volatility stock. When AT increases, liquidity actually declines for the smallest terciles of stocks, 

remaining unchanged for high-volatility and low-price stocks. The main costs associated with AT, in 

terms of elevated volatility when AT intensity is high, are significantly higher in stocks that are small, 

low-priced, or high volatility. Establishing these cross-sectional differences in the effect of AT is 

important, because these differences imply that optimal regulation may need to impose different 

requirement on different categories of stocks. 

Our third objective is to look more closely at the market-making strategies associated with 

algorithmic traders. We can neither observe actual strategies nor identify specific traders that might 

employ them. We only observe the stock-level aggregate effect of AT and its variation over time in a 

particular market. We exploit this advantage of our data by designing a firm-level time-series proxy for 

days when market making strategies are likely to be more costly to execute. Then we examine whether 

the effects of AT are different on those difficult market-making days compared to normal days. We find 
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that when market making is more costly, AT provides less liquidity and is more informed, thereby 

enhancing efficiency. Moreover, volatility increases more on those days than on easy market-making 

days. Our evidence is consistent with the public policy perspective that competition among traders may 

endogenously create sufficient liquidity. If, however, regulators see the need to guarantee the availability 

of liquidity at all times, they may have to specify a binding set of affirmative obligations, perhaps in 

exchange for a monetary reward. 

 Overall, our results show that while algorithmic trading often improves liquidity, this beneficial 

effect is smaller when market making is either difficult or applied to low-priced or high-volatility stocks. 

AT’s effect on market quality reverses for small cap stocks, where more AT is associated with a decrease 

in liquidity. Across our tests, AT usually improves efficiency.  The main costs associated with AT appear 

to be elevated levels of volatility. Although this effect prevails even for large market cap, high price, or 

low volatility stocks, it is more pronounced in smaller, low-price, or high-volatility stocks.  

Our paper is organized as follows. We review the theoretical and empirical literature in Section 2. 

In Section 3, we discuss our data and define the key variables we use. We discuss our empirical design in 

Section 4 and present our results in Section 5. The final section concludes.  

2. Literature on algorithmic and high frequency trading 

Algorithmic trading (AT) is not a recent phenomenon, but its intensity, volume, and especially 

the speed at which it is conducted has experienced precipitous growth over the past decade. The 

availability of an efficient platform for implementing AT strategies is a precondition for high frequency 

trading (HFT), which one can view as the subset of AT that can respond to changes in news flow and 

market conditions within milliseconds. In this paper, while recognizing the difference between AT and 

HFT, we will use the two terms interchangeably to refer to algorithmic traders with access to fast trading 

technology. Several theoretical and empirical models analyze HFT’s effects on market quality measures, 

including execution costs, volatility, and informational efficiency. Although it is a young literature, 

analyses of HFT and algorithmic trading reveal an interesting dichotomy. While theoretical models 
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mostly predict negative (or mixed) consequences of having fast traders in the market, the average effects 

estimated in empirical results tend to be positive.  

A. Theory  

Cartea and Penalva (2012) design a model with liquidity traders, market makers, and HFT. They 

find that HFT increases not only overall trading volume but also volatility and the price impact of 

liquidity traders. Market-makers come out even—they lose market share (and thus revenues) for liquidity 

provision to the HF traders but are compensated with higher rewards for their remaining liquidity supply. 

The cost for the higher rewards to market making, and for the greater revenues to HF traders, are all borne 

by the liquidity traders. Ait-Sahalia and Sagdam (2013) find that greater volatility reduces liquidity 

supplied by fast traders. In Jarrow and Protter’s (2012) model, HF traders also observe order-flow 

information faster than other traders. They show that when demand curves are downward sloping, HF 

traders’ activity affects price and creates a temporary mispricing that HF traders can profitably exploit. In 

this case, the detrimental effect lies in less efficient pricing in addition to a potentially undesirable transfer 

from slow to fast traders.2 

Several recent papers address the welfare issues associated with HFT. Pagnotta and Philippon 

(2012) examine how exchanges determine their investment in fast-trading technology and how traders 

make their order submission decisions. Allowing market structure and speed to arise endogenously, they 

show that outcomes are generally inefficient relative to the efficient outcome where all venues break 

even. Depending on the market structure, in equilibrium participation is too low and, in some cases, 

trading speed is suboptimal.  

                                                       

2 A wealth transfer similar to those in these HFT studies  arises in an earlier model by Brunnermeier and Pederson 
(2005), who allow traders to follow order anticipation strategies (“predatory trading” in their model). This strategy 
requires the ability to predict order flow in real time at high frequency, and it is easily implemented as a trading 
algorithm. Order anticipators attempt to predict large uninformed orders and then trade ahead of these orders, in the 
same direction. This trading activity increases the costs for the large liquidity trader, who will end up trading at 
relatively inferior prices, perhaps even with the order anticipator. Brunnermeier and Pederson show that order 
anticipation trading leads to price overshooting and withdraws liquidity from the market when liquidity  is most 
needed (by the large trader). As a result, a wealth transfer occurs from the large liquidity trader to the order 
anticipator. Moreover, Brunnermeier and Pederson show that the low-liquidity event can trigger systemic liquidity 
shocks for other traders and markets, thereby multiplying the negative consequences that the order anticipator 
imposes on the market. 
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Hoffman (2014) extends Foucault’s (1999) limit order market and allows algorithmic (fast) and 

human (slow) traders to compete. Traders can endogenously choose to invest in fast-trading technology. 

Being fast means that traders can react to news first, thereby reducing the risk that their limit orders will 

be picked off after adverse price moves. In this model, the welfare effect of introducing algorithmic 

traders depends on the level of market efficiency. While investments in fast technology improve welfare 

when efficiency is sufficiently high, they reduce welfare when efficiency is too low.  

Biais, Foucault, and Moinas (2014) show that HF traders can generate gains not only from trade 

but also from adverse selection, due to their faster access to information. However, a social planner would 

only consider gains from trade; as a result, HF traders overinvest in technology, a strategy leading to 

socially undesirable outcomes. Overall, existing theoretical models agree that HFT has undesirable 

consequences for liquidity traders, informational efficiency, and volatility, and these effects may well 

result in lower social welfare. Finally, Jovanovic and Menkveld (2015) presents a  model where 

middlemen intermediate between fast limit order and slow market order traders. Depending on parameter 

values, their entry may increase or decrease trading volume, and also has a mixed effect on welfare.  

B. Empirical studies 

The recent spread of HFT has spurred a number of empirical studies that examine its 

consequences. Using detailed account-level data, Kirilenko et al. (2014) look at E-mini S&P 500 futures 

trading around the flash crash of May 6, 2010. They identify actual HFT using account identifiers and 

assess these traders’ role in the market decline and subsequent recovery. They argue that although the HF 

traders were passive and did not cause the downturn, they did not provide the liquidity for accelerating 

recovery either. Baron, Brogaard, and Kirilenko (2014) use similar data to show that revenues in HFT in 

S&P 500 e-minis during 2010-2012 are concentrated in a small number of HFT firms via liquidity taking 

and higher speed. To date, however, no account-level data are available for equities. 

Hendershott and Riordan (2013) and Boehmer and Shankar (2014) use order-level identifiers for 

orders that originate from algo traders. Likewise, Menkveld’s (2013) sample relies on broker identities to 



8 
 

infer the trades by a single HFT in the European market. Although these samples allow inferences about 

algos and HFT, respectively, they are limited to relatively narrow samples.3 

 Hasbrouck and Saar (2013) infer HFT from the speed with which traders react to market events. 

Most remaining studies, including this paper, use some variations of message-to-trade ratios as proxies 

for AT. Messages refer to trades, order arrivals, or order cancellations. Because many algo-trading 

strategies involve frequent cancel-and-replace order traffic, the proportion of traffic that leads to a trade is 

typically much smaller for algo traders than for non-algo traders. Message-to-trade ratios are well 

accepted as AT proxies in the trading industry. They allow researchers to use the full panel of stock-days 

for which standard intraday trade and quote data are available.  

Some studies exploit broader categories, using an identifier for a group of HF traders (e.g. 

Brogaard et al 2014; Brogaard et al, 2015; Carrion, 2013).  These studies use a 2008-2009 Nasdaq sample 

that summarizes the aggregate order flow generated by 26 HFT firms. These firms capture about three 

quarters of trading volume in the sample stocks. The main advantage is that actual HFT can be observed 

for a random sample of 120 stocks. Potential drawbacks include the selection of HFT firms, which have 

been picked by the exchange that provided the data and, presumably, have been willing to have their 

order flows disclosed to academics and, implicitly, regulators. Because high frequency strategies are 

typically considered sensitive both from a legal and a competitive perspective, this selection process 

could conceivably result in orders that are more benign and of lower competitive value than a random 

sample of HFT orders. Other potential issues also complicate drawing inferences from this dataset. First, 

the sample of 26 HFT firms does not include any of the large proprietary trading desks that presumably 

are responsible for a sizeable portion of HFT. Second, the 26 sample firms appear to be large trading 

firms that specialize in HFT, and these firms often operate in multiple countries and on multiple 

exchanges. Yet we do not know what fraction of their order flow the sample firms submit to other 

markets, for stocks either included or not included in the Nasdaq sample. Overall, while these data are 

                                                       

3 For example, Hendershott and Riordan (2013) examine 30 Deutscher Aktien Index stocks on the Deutsche Boerse 
in January of 2008. Boehmer and Shankar (2014) look at one event in 2010 on National Stock Exchange of India. 
Menkveld (2013) examines 1 HF firm on Euronext and Chi-X. 
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appealing because they reveal certain HFT activity, they also have significant shortcomings that 

complicate drawing inferences.  

In summary, the broadest data sets that rely on proxies for identifying AT, a strategy that in 

principle would allow the strongest inferences, make the least clear distinction between HF algorithmic, 

and slow trading. At the other extreme, data sets that identify actual HF activity tend to be either small, 

limited to specific securities or periods, or not necessarily representative for other reasons. Moreover, 

some of these available data sets are subject to endogeneity concerns, because identifying whether 

causality goes from market quality to HFT activity or from HFT activity to market quality is generally 

difficult.  

Given these basic data concerns, most studies present a positive picture of AT/HFT on liquidity 

and price efficiency. Hendershott, Jones, and Menkveld (2011) are among the first to document this 

relationship. They show that algorithmic trading leads to better liquidity and faster price discovery. They 

use the 2003 introduction of autoquote at the NYSE as an instrument for establishing causality from 

algorithmic trading to market quality improvements. Using HFT activity inferred from millisecond-level 

responses, Hasbrouck and Saar (2013) find improvements in volatility, spreads, and depth when these fast 

traders are active. Brogaard, Hendershott and Riordan (2014) document that HFT plays an important role 

in price discovery. Additionally, for a much smaller Deutsche Boerse sample, Hendershott and Riordan 

(2013) find that algorithmic trading makes prices more informative. For retail traders in the Canadian 

market, Malinova, Park, and Riordan (2013) show that a decline in HFT reduces liquidity and profits.  

On the negative side, Kirilenko et al. (2014) argue that HFT worsened (but did not cause) the 

May 6, 2010 flash crash. Dichev, Huang, and Zhou (2014) find that trading per se generates excess 

volatility, suggesting that HFT can lead to undesirable levels of volatility. Hasbrouck and Saar (2009) 

document the “fleeting” nature of many limit orders in electronic markets, questioning the traditional 

view that limit orders provide liquidity to the market. This finding raises questions about the quality or 

usefulness of HFT-provided liquidity that is often short-lived, with availability periods sometimes 

measured in milliseconds.  
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Consistent with this concern, Egginton, Van Ness, and Van Ness (2014) show that periods of 

extremely active quoting behavior are associated with degraded liquidity and elevated volatility. 

Importantly, they show that such episodes are surprisingly frequent. Yet despite good economic reasons 

for such quote-bunching to occur as a benign by-product of HF liquidity provision, as Hasbrouck and 

Saar (2013) argue, that this quote-bunching arises as a consequence of intentional “quote stuffing” is also 

possible. This practice involves submitting a large volume of messages to disguise trading strategies. Gai, 

Yao, and Ye (2013) show that quote stuffing has negative effects on trading, arguing that no offsetting 

social benefits exist.4 McInish and Upson (2012) examine trading around quote changes. Comparing fast 

and slow responses, they find that fast traders strategically leave stale orders on the book and that slow 

traders often interact with these orders at prices that are inferior to those available elsewhere.  

Such “structural strategies” (see SEC 2010 for a discussion) exploit wealth transfers among 

traders and may not have off-setting market-quality implications. Interestingly, Hirschey (2013) finds that 

the profits of HF traders are most easily explained by their ability to predict other traders’ order flow, 

rather than by arbitrage or market-making activities that provide benefits to markets. Finally, Chaboud et 

al. (2014) look at HFT in the foreign exchange market and document that the correlation among 

algorithmic “machine” orders is much higher than that among “human” orders. Similarly, Anand and 

Venkataraman (2015) find that synchronous withdrawal of liquidity provision by HF firms under difficult 

market conditions contributes to fragility of liquidity supply on Toronto Stock Exchange. These findings 

raise questions about the contribution of AT to the transmission of systemic risk.  

Overall, we make two observations. First, the generally positive picture of AT emerging from the 

empirical evidence appears inconsistent with the generally negative expectation arising from theoretical 

work in this area. Second, the empirical evidence is not in agreement either. While many studies find that 

algorithmic and HF traders increase liquidity and price discovery, others raise concerns about the quality 

of liquidity, AT’s effect on volatility, and potential wealth transfers from slow to fast traders.  We believe 

                                                       

4 However, recent study by Conrad et al (2015) finds higher quoting activity is associated with better price 
efficiency. 
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that these observations demand additional analysis of the broader issues related to algorithmic and HF 

trading. In this paper, we examine how algorithmic trading is related to market quality and contributes 

new large-sample, cross-country evidence to the literature. 

3. Data 

Our main data source is the Thomson Reuters Tick History (TRTH) database, which contains 

intraday trades and quotes data for many markets around the world. We combine these data with U.S. 

intraday data from Trades And Quotes (TAQ) database, and merge the result with firm-level data in 

Datastream and Center for Research and Security Prices (CRSP) database. Our initial sample includes all 

domestic common stocks covered in the resulting database. Data on buy-side transaction costs come from 

the Ancerno database complied by Ancerno Ltd. (formerly the Abel/Noser Corporation). 

The TRTH database (supplied by the Securities Industry Research Centre of Asia-Pacific, 

SIRCA) provides access to the data feeds from various stock and derivatives exchanges that are time-

stamped to the millisecond and transmitted through Reuters' terminals. TRTH organizes data by the 

Reuters Instrument Code (RIC). Each RIC is associated with a list of characteristics, such as asset class 

(e.g., equity), market, currency denomination, the date of the first and the last record, and the ISIN and 

SEDOL where applicable. The database contains more than 5 million equity and derivatives instruments 

around the world. A company may have multiple RICs representing common shares, preferred shares, 

different share classes, or securities in special trading status. To both create a comprehensive sample of 

RICs for each market and avoid double counting, we focus on one common stock per company, traded in 

the home country and in local currency. As TRTH has limited coverage of these screening variables, we 

construct our sample by first merging TRTH with Datastream by identifying matches between RIC and 

Datastream firm identifiers.  

Datastream identifies securities by DSCODE, which uniquely identifies a security-trading venue 

combination. Each DSCODE is associated with a comprehensive list of static securities information. We 

retain only the DSCODE in the local market, traded in the local currency and identified as “major 
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security” and “primary quote.” These screening criteria lead to one DSCODE per domestic company, 

each having a unique ISIN. We are interested in the primary trading location, which coincides with the 

listing exchange in all markets except Germany. For Germany, we use XETRA (the primary trading 

location) rather than Frankfurt (the primary listing location), because XETRA handles roughly 90% of 

volume for most stocks. We merge the two data sources as follows: For each exchange, we obtain the 

ISIN and the history of high, low, and last trade price for each RIC from the TRTH database. We find the 

corresponding trading venue on Datastream and identify the unadjusted daily price, market capitalization, 

and the adjustment factor (dilution) for each screened DSCODE. Then we match RIC to DSCODE using 

ISIN. There may be more than one RIC per DSCODE if a company changes the trading symbol. We 

validate the match by comparing the Datastream price history to the TRTH price history after adjusting 

for currency-reporting differences. 5 This procedure produces stocks trading on 42 equity exchanges in 37 

countries.6 

The TRTH data have qualifiers that contain market-specific codes denoting the first trade of the 

day, auction trades, and irregular trades (such as off-market trades or option exercises). We remove 

irregular trades before computing intraday variables.  

Trading hours differ across exchanges and over time. We determine each exchange’s historical 

trading hour regime by examining the trade frequency across all stocks on the exchange at 5-minute 

intervals. We identify the opening and closing times of regular trading from spikes and drops in trading 

activity across all stocks at each exchange. We cross-check our approach against the trading hour regime 

and the trading mechanism entries listed in Reuter’s Speedguide and the Handbook of World Stock, 

Derivative and Commodity Exchanges. 

                                                       

5 TRTH prices are historical prices in the original currency. Datastream unadjusted prices are historical prices in the 
current currency unit, e.g., French stocks prior to 1999 were traded in French franc. We convert Datastream prices to 
Euro equivalents.  
6  We drop Ireland, where data is available for fewer than 30 stocks prior to 2008.  China has three exchanges 
covered in Datastream (Hong Kong, Shenzhen, and Shanghai); India (Mumbai and National exchanges), Japan 
(Tokyo and Osaka), and the U.S. (NYSE and Nasdaq) have two; and all other countries have one exchange included 
in the sample. 
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Ancerno provides transaction costs analysis for its institutional buy-side clients. Each Ancerno 

data record includes an anonymized client code, a broker code, the CUSIP and ISIN for the stock, the date 

of execution, the execution price, and the number of shares executed, as well as whether the execution is a 

buy or sell. Multiple trades are often associated with a client on a particular stock day. We match the 

Ancerno data to CRSP and Datastream stock and market data using the date, CUSIP, ISIN, and ticker. To 

accommodate investors who split orders across brokers, we follow Anand et al. (2012) by aggregating 

trades into daily orders by client, stock, date, and trade direction. 

A. Variables 

Our objective is to make inferences about the relationship between algorithmic trading and market 

quality. We use variables that describe several dimensions of market quality, focusing on liquidity, 

volatility, and informational efficiency. We describe these variables in this section, along with our proxies 

for algorithmic trading activity. 

Liquidity measures 

We compute several standard measures of liquidity and execution costs. For each stock, we have 

the best quoted spread throughout the trading day. For a given time interval s, the relative quoted spread, 

standardized by the quote midpoint, is defined as 

 RQSs = (Asks - Bids) / ((Asks + Bids)/2),      (1) 

where Asks is the best ask quote and Bids is the best bid quote in that time interval. When aggregating over 

a trading day, we use time-weighted averages of RQS. The wider the spread, the less liquid is the stock. 

To take into account possible price improvement potentially arising from hidden liquidity, we 

compute the relative effective spread, standardized by the quote midpoint at the time of the trade. The 

RES on the thk  trade is defined as  

 RESk = 2Dk (Pk - Mk)/ Mk,      (2) 
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where Dk is an indicator variable that equals +1 if the thk  trade is a buy and -1 if the thk  trade is a sell, Pk  

is the price of the thk  trade, and Mk is the prevailing midpoint at the time of the thk  trade. We follow the 

standard trade signing approach of Lee and Ready (1991) and use contemporaneous quotes to sign trades 

and calculate effective spreads (see Bessembinder (2003), for example). RES measures the total price 

impact of a trade.  

We further decompose this price impact into a permanent (information-related) price impact, RPI, 

and a transitory component, the relative realized spread, RRS. We follow standard practice and base both 

components on the quote midpoint that prevails five minutes after the trade. RRS on the thk  trade is 

defined as 

RRSk = 2Dk (Pk - Mk+5)/ Mk,      (3) 

where M(k+5) is the midpoint five-minutes after the thk  trade. RRS can be interpreted as the reward for 

providing liquidity. The permanent component, RPI, is defined as  

RPIk = (RESk -RRSk) = 2Dk (Mk+5 -  Mk)/ Mk,    (4) 

and measures the change in quote midpoints that is attributable to the information content of the trade. We 

first compute trade-weighted averages of RES, RRS, and RPI for each stock-day and then equally 

weighted averages across stocks.  

 In addition to these intraday liquidity measures, we compute the Amihud (2002) illiquidity ratio, 

a lower-frequency measure of liquidity, estimated as the absolute value of daily return divided by the 

contemporaneous dollar trading volume. A larger Amihud ratio indicates that a given volume moves 

prices by a larger magnitude, thus implying lower liquidity.  

As a robustness test, we use execution shortfalls for the buy-side firms that report to Ancerno. In 

contrast to the trade-and-quote-based measures, the shortfall represents actual execution expenses for an 

institution’s order flow. We define daily execution shortfall, SHORTFALL, as: 
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SHORTFALL = Dk * ( XP – RP ) / RP,       (5) 

where XP is the volume weighted average price across component trades of a daily order and RP is the 

reference price, defined as the opening price on the day of the order.  

Volatility 

Our primary measure of volatility is the intraday range between the highest and lowest prices of a 

day standardized by the daily closing price.  This measure is useful because it reflects intraday 

fluctuations in share prices that may trigger or result from algorithmic trading. In addition, we compute 

four different measures of realized volatility. For lower-frequency measures, we employ the absolute 

value of daily returns, |Ret|, and daily return squared, Ret2. We compute analogous measures for daily 

market-adjusted returns, |MktadjRet|, using market-cap weighted index returns (dilution and dividend 

adjusted) on all stocks from Datastream as a benchmark. As higher-frequency measures, we use the log of 

intra-day return variances computed from 10-minute and 30-minute mid-quote returns, Ln(Ret10_Var) 

and Ln(Ret30_Var). 

Informational efficiency 

We compute intraday measures of informational efficiency following Boehmer and Kelley 

(2009). For most of our analysis we rely on intraday measures of quote midpoint autocorrelation. If prices 

are efficient and follow a random walk, these measures should be close to zero at all horizons . Deviations 

from zero in either direction indicate partial predictability. We thus use the absolute value of quote 

midpoint return autocorrelations. We estimate this measure for each stock-day,  |AR30|, based on 30-

minute return intervals (see Chordia, Roll, and Subrahmanyam, 2005). Results are qualitatively similar 

for 10, 20, and 60-minute return intervals.  

Proxy for AT 

Algorithmic activity is generally associated with fast order submissions and cancellations (see 

Hasbrouck and Saar, 2013). The proxy for AT used by Hendershott, Jones, and Menkveld (2011) reflects 

this concept. We follow their approach and use AT, the negative of trading volume in USD100 divided by 

the number of messages, as a proxy for algorithmic trading activity. It represents the negative of the dollar 
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volume associated with each message (defined as either a trade or a quote update). An increase in this 

measure reflects an increase in algorithmic activity. 

Our AT measure is well suited for international and inter-firm comparisons, because it provides a 

continuous scale of relative AT intensity for each market (rather than an on-off switch, or an absolute 

measure that does not recognize differences across markets). Doing so allows us to use the same measure 

across a variety of market structures that differ substantially in the degree to which AT is prevalent. 

Perhaps more importantly, using a relative measure of AT allows the nature of “fast” or “low-latency” 

trading to differ across markets. For example, some markets impose hurdles to fast quoting.  AT will 

remain more intense in some stocks and some episodes than in others. Moreover, because our proxy 

represents a relative measure of AT, we can use it to compare the effect of AT across countries even when 

comparing a market with latency measured in nanoseconds to one where it is measured in seconds. In 

either market, HF traders gain by being faster than other traders and our relative, continuous measure of 

AT captures this contrast well.  

Our measure of AT differs in an important way from the one used by Hendershott, Jones, and 

Menkveld (2011), who have access to order-level messages. For our worldwide sample, we have access 

only to a subset of these messages, observing each exchange’s best quotes and trades, rather than all 

order-related messages. Conceptually, using just trades and changes in the best quotes should not be a 

problem. For example, the HFT strategies mentioned in the SEC 2010 concept release involve most 

activity at the BBO, rather than behind it. Therefore, the AT activity in our BBO trade data set is highly 

correlated with AT activity in an order trade dataset.7 

                                                       

7 We formally address the correlation between AT measures based on order level data, and AT based on trades and 
best quotes. We repeat HJM’s time-series and panel results for the U.S. using order-level data and compare the 
results to the ones we obtain with our data and our version of the AT measure. The time series in which our 
orderlevel data and the TAQ data overlap is very similar to the period presented in HJM. Our exercise using only 
NYSE activity yields qualitatively identical results for HJM’s order-level count and our count of trades and inside 
quote changes. This result is not surprising because the correlation of these two series, for the average stock, exceeds 
0.9. Therefore, we have little reason to expect our AT proxy to deliver substantially different results than the 
Hendershott, Jones, and Menkveld (2011) proxy. 
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B. Descriptive statistics 

For inclusion in our final analysis, we impose additional data requirements. We exclude stocks 

that have data for fewer than 21 trading days during the sample period. We then winsorize all variables 

each day at 0.5% and at 99.5% within each market. To illustrate the breadth of our sample, Table 1 lists 

the number of stocks for each market. For the average year, our sample includes about 21,507 firms, and 

we have substantial variation across markets. Over the sample period, the number of listed firms 

increases, on average, by 50%, or from 473 to 560 for the average market.  

Our key analysis variable is the distribution of message traffic (the number of all quote changes 

and all trades), the main component of our algorithmic trading proxy. For each market, Table 2 lists the 

median number of messages per day in 2001 and in 2011 along with the change and percentage change 

over this eleven-year period. We make several important observations. First, message traffic grows over 

time, often steeply, in all but three markets. Only Greece, Singapore, and Sweden experience declines in 

average message traffic per stock day. Overall, message traffic grows by 412% across markets, from 30 

messages per stock day in 2001 to 121 in 2011. This development is consistent with AT playing an 

increasingly important role around the world. Figure 1 shows that this growth accelerates exponentially 

during the second half of the decade. We also observe that most of the message growth comes from quote 

messages rather than trade messages, further motivating an order-to-trade ratio as a proxy for the 

unobservable AT intensity. 

Although our analysis is cross-sectional, we begin by describing the time-series of our key 

dependent variables. In Figure 2 we present the average monthly time-series for our measures of liquidity, 

efficiency, and volatility, respectively. For each market day, we first compute an equally weighted mean 

across firms, and then average within each market month. In the figure, we plot the monthly time series of 

averages across markets. The quoted and effective spreads, RQS and RES, in Panel A show similar 

patterns. For example, RES begins at 250 bp in the beginning of 2001 and declines to 150 bp by the end 

of 2007. Afterwards, it peaks at the end of 2008, when the financial crises around the world start to 

unfold. RQS declines from 500 bp in 2001 to 246 bp in 2007, and then increases to 660 bp during the 
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financial crisis before declining to 400 bp in 2011. The difference between RQS and RES primarily 

reflects the absence of trades during high-spread periods or the presence of traders who execute against 

non-displayed liquidity inside the quotes. When we decompose RES into its transient (RRS) and 

permanent (RPI) components, we again find very similar patterns. Both components decrease until mid-

2007 and then increase again. We also observe that RRS exceeds RPI in every year by about 50%.  

Panel B shows |AR|, the absolute value of quote midpoint autocorrelation of returns measured 

over 10 and 30 minute intervals. Both measures are almost flat, with a slight decline over the sample 

period. The volatility measures in Panel C also decline slightly over the sample period, with a large spike 

towards the end of 2008 and a smaller increase in 2011. Both efficiency and volatility trends provide a 

clear contrast to the liquidity measures, which have a pronounced “U” shape over time. 

4. Methodology 

A. Country-specific analysis 

We first identify, for each of the 42 markets, the relation between AT intensity and market 

quality, summarized by measures of liquidity, volatility, and informational efficiency. We document this 

relationship in panel regressions that control for firm and day fixed effects. These fixed effects prevent us 

from interpreting systematic patterns in market quality across firms or secular patterns over time as the 

result of AT.  

Separately from our main analysis, we use an instrumental variable (IV) approach to handle 

potential endogeneity issues. In addition, our cross-country design at least partly allays the concern about 

endogeneity in the market quality/AT system, a possible concern about single-country studies. The reason 

is that with a cross-country study the hurdle for the reverse-causality argument is higher: that causality 

runs the same way in all countries is unlikely, ceteris paribus. Although this argument still does not imply 

causality, one can learn a lot from taking a detailed look at the actual (not instrumented) relationships, 

especially when they are consistent and significant across countries. 
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For our main cross-sectional analysis, we employ the following panel regression within each 

market:  

MQit = αi + γt + βATi,t-1 + δXi,t-1 + εit,     (7) 

 
where the αi are firm fixed effects, the γt are day fixed effects, AT is our proxy for algorithmic trading, and 

X is a vector of control variables. This vector includes share turnover, inverse price, the log of market 

value of equity, the lagged dependent variable, and the daily price range standardized by the daily closing 

price (a proxy for volatility, omitted from the volatility regressions). To ensure that all explanatory 

variables are predetermined, they are lagged by one period. To make coefficients comparable across 

countries, we standardize all continuous variables each day in the cross-section. For inference within 

countries, we use standard errors that are robust to cross-sectional and time-series heteroskedasticity and 

within-group autocorrelation (Arellano and Bond, 1991). Cross-market inference, our focus in this paper, 

is based on an equal-weighted means of the 42 market-specific coefficients and simple cross-sectional t-

statistics also based on these 42 observations. This approach is conservative in terms of standard errors, 

because all inference is based only on the 42 market-specific observations.8 

  Because the relation between AT and market quality could differ across firm attributes, we 

differentiate observations according to cross-sectional firm characteristics including market cap, 

volatility, and share price. Unless stated otherwise, we determine daily, separately for each market, the 

lowest and highest tercile of firms based on the most recent 20 trading days. We assign “LOW” and 

“HIGH” dummies, respectively, to firms in these terciles. We augment our regression model (7) with the 

two interactions between AT and each dummy. The interaction coefficients capture the potentially 

different effect of AT on market quality in the LOW or HIGH terciles relative to the middle tercile. The 

                                                       

8 Our approach is conservative especially in relation to a three-way panel across markets, stocks, and time, pooling 
all observations. The three-way estimates agree in sign with the ones provided in this paper. However, because of 
the much larger number of observations, these estimates have substantially lower standard errors. In another 
robustness check, we use a market-specific Fama-MacBeth model. For each day, we estimate a cross-sectional 
regression analogous to equation (7) within each market, but without the firm and time effects. For tests within 
markets, we compute the time-series average of each coefficient and use Newey-West standard errors for inferences. 
Across-country inference uses cross-sectional t-statistics as in the main analysis. This approach produces 
qualitatively identical results (but economically larger in magnitude) that are not tabulated. Again, the method 
tabulated and discussed in the paper is the more conservative approach. 
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total effect of AT for LOW firms is given by the sum of the coefficient on AT and the coefficient on 

AT*LOW. We interpret results for the HIGH dummy analogously. 

B. Instrumenting AT 

We next establish that the relation between AT and market quality is not spurious. We seek an 

instrument that satisfies the exclusion restriction, i.e., is not causally related to any of our market quality 

variables. In addition, the instrument should be closely related to AT intensity. As our sample represents a 

multitude of trading protocols and market structures, finding an instrument that has the same 

interpretation across markets is important. We rely on the event of “co-location” in each country.9 “Co-

location” refers to locating a trader’s computer hardware physically close to a trading center’s hardware. 

Doing so allows the trader’s order submission algorithm to interact with the trading center with minimal 

latency. Brogaard et al. (2015) show that co-location (at NASDAQ OMX Stockholm) allows fast traders 

to reduce their cost of liquidity provision and thus trade more profitably. To introduce such a program, 

some markets announce a program or pricing scheme, while others announce that a specific trading firm 

is now co-located (and typically invite successors).  

From these announcements, we identify the first implementation date (rather than use the first 

announcement date itself) to capture the change in trading that is prompted by the lower co-location-

related latency. Co-location introductions mark an event that is fairly homogenous across exchanges, in 

that the event specifically provides infrastructure for fast traders and signals an exchange’s commitment 

to accommodate such traders. Obtaining event dates from news searches could lead to varying precision 

across countries. However, to the extent that the resulting errors are random, they should not affect the 

consistency of the IV estimator, because such random errors would be captured by the regression error. A 

complete list of all co-location dates is reported in the Appendix. 

                                                       

9 Other possible instruments include the introduction of direct market access for traders, DMA, or other updates to 
the trading protocol that imply a structural change in how traders implement AT / HFT strategies. 
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To compute the actual instrument, we choose two different strategies. First, we use a simple 

switch variable that is zero before co-location and one afterwards. Second, we use a continuous version 

that equals zero before, and the number of days since co-location afterwards. This latter variable is 

motivated by the observation that with more time after the first event, we would expect more widespread 

use of co-location and thus a stronger relation with AT. 

The introduction of co-location happens at different dates across markets. Because co-location 

applies to all firms within a market simultaneously, we use a between-estimator at the market level. 

Specifically, we compute the market-value weighted averages for all variables within each market, 

standardize the resulting time series within each market, and then perform a two-stage generalized 

instrumental variable estimation. In the first stage, we regress our AT proxy on time-fixed effects and a 

co-location dummy (adding the remaining explanatory variables to the first stage leaves inferences 

unchanged but increases standard errors). In the second stage, we estimate  

 MQct = αc + γt + βAT*ct + δXct + εct,     (8) 

where the αc are market fixed effects, the γt are day fixed effects, AT* is the vector of predicted values 

from the first-stage regression, and the other variables are market-specific weighted averages of the 

control variables described earlier. For inference we use standard errors that are robust to cross-sectional 

and time-series heteroskedasticity and within-group autocorrelation based on Arellano and Bond (1991). 

Besides formalizing our approach to address endogeneity, this market-level regression also serves as a 

robustness check for the main analysis, in which we treat individual markets separately. 

5. Regression results 

A. Within-market effects of AT 

As described in section 4, we conduct a two-dimensional analysis within each market using daily 

two-way fixed-effects regressions. This approach allows  more conservative global inferences based on 

market-level averages.  



22 
 

Panel A of Table 3 presents a summary of the liquidity-related coefficients that we estimate for 

each market.10 For example, the mean coefficient of AT on RES is -0.0097, meaning that a one-standard 

deviation increase in AT implies almost a 0.01 standard deviation decrease in relative effective spreads. 

The associated t-statistic is -3.5, using the cross-sectional standard error across the 42 markets. AT is 

associated with better RES in 69% of the markets. The opposite (a significant positive coefficient) is true 

only in 26% of the markets. We find consistent results with the other liquidity measures, i.e., an increase 

in AT is associated with decreases in RQS and the Amihud measure. Finally, we document that more AT 

is associated with lower information content of trades (RPI) and the transitory price impact (RRS), a 

measure of the premium earned by liquidity suppliers. These results suggest that, on average, greater AT 

intensity is associated with improved liquidity but does not increase the information content of trades.11 

In Panels B, C, and D, respectively, we assess how AT-liquidity relation varies with market cap, 

share price, or return volatility. For each measure, we contrast the effect for the lowest tercile (“LOW”) 

with the effect of the largest tercile (“HIGH”). Within each market, we first determine the lowest and 

highest terciles from the moving average (standard deviation) of market cap and share price (returns) over 

the past 20 trading days and interact the LOW and HIGH dummies with AT, as described earlier. We 

report the mean coefficient of AT, which now represents the relation between  AT and liquidity for the 

middle tercile of the sort variable, and coefficients for the two interactions. We also report the total effects 

for LOW and HIGH stocks.  

In Panel B, we sort by market cap, with the LOW and HIGH dummies representing firm sizes 

within each market. A look at Amihud illiquidity reveals that the largest firms have a marginal coefficient 

of -0.006, significant at the 5% level, suggesting that the largest firms experience a reduction in Amihud 

                                                       

10 Coefficients on firm fixed effects, daily fixed effects, and control variables are estimated as described in equation 
(7) but not tabulated. 
11 While not tabulated, the corresponding coefficient averages based on the Fama-MacBeth approach yield identical 
inferences for the coefficient signs. However, that the magnitude of the AT effect is much larger for the FMB 
models than for the panel estimation that we present in Table 3. For example, the mean effect of AT on RES is -
0.035 standard deviations with FMB—more than three times larger than the estimate from the panel regressions. 
The differences arise from different treatment of time effects. FMB allows slope coefficients to vary across days, 
while the two-way panel nets out an aggregate time trend. We tabulate the panel regressions because they are 
econometrically more appropriate and, ex post, present the more conservative results. 
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illiquidity (i.e., an improvement in liquidity) that is 0.006 standard deviations greater than the reduction of 

0.01 standard deviations experienced by firms in the middle terciles. The total effect of AT on large firms 

is the sum of these coefficients, -0.016, presented in the last row of Panel B. With a t-statistic of -9.6, the 

total effect is statistically significant at the 1% level. The results for the other liquidity measures indicate 

that the AT effect in the large terciles is not significantly different from that in the middle terciles, but that 

AT in the largest firms remains associated with a significant liquidity improvement. Results are quite 

different for small firms. The marginal effect of AT is positive and significant at the 5% level across all 

measures, i.e., AT is associated with wider spreads in small firms compared to middle-tercile firms. This 

finding suggests that in small firms, compared to other firms, more intense AT is associated with lower 

liquidity. Indeed, the total effect of AT is positive for small firms. Greater AT intensity in small firms is 

associated with higher transaction costs and, therefore, a decline in liquidity. 

Panel C presents a similar cross-sectional analysis based on share price. The marginal effects (the 

coefficients on the interactive terms) tend to be significant for the LOW group but not for the HIGH 

group, indicating that the LOW tercile is different from the middle one. Although the differences are not 

as pronounced as those for market cap, AT is associated with better liquidity in the mid- and high-priced 

categories. AT in low-priced stocks is associated with  lower liquidity.  

Panel D looks at the relation between AT and liquidity, sorted by each stock’s past 20-day return 

volatility. Similar to the price sorts, we find better liquidity associated with AT is concentrated in low-

volatility stocks. The marginal effect of AT is significantly more positive for high-volatility stocks, 

implying that when AT increases, they experience a significant lower liquidity benefit. 

Table 4 presents the relationship between AT and informational efficiency. On average, we find 

significantly negative coefficients in Panel A. This finding suggests that more AT is associated with 

lower |AR|, implying an improvement in informational efficiency for both measures of autocorrelation. 

Panels B, C, and D show how the relation between AT and efficiency varies in the cross section. 

Generally, AT is associated with better efficiency in all terciles, independent of the sort variable. One 

exception is the tercile of small firms, which experience no efficiency improvement when AT increases. 
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Share price has no statistically significant effect on the AT-efficiency relationship. High volatility firms, 

however, have significantly better efficiency  than low-volatility firms when AT becomes more intense.  

Table 5 summarizes the AT coefficients for regressions that explain short-term volatility. As 

Panel A shows, more intense AT is associated with higher volatility, and the results are uniform across 

volatility proxies whether we look at intraday realized volatility, daily realized volatility, or the 

standardized intraday price range. Moreover, the coefficients are consistently positive across most 

markets. The percentage of positive coefficients ranges from 76% (variance of 10-minute returns) to 86% 

in most other models. The remaining panels in Table 5 reveal that greater AT intensity is associated with 

greater volatility in each firm tercile, whether sorted by size, price, or volatility. However, the relationship 

is significantly stronger for stocks that are small, are low-priced, or have high return volatility to begin 

with. 

The question arises as to whether the positive coefficient of AT reflects an association of AT 

intensity with “good” volatility. Given that AT is associated with better informational efficiency, it is 

conceivable that the elevated volatility associated with more AT may reflect faster price adjustments to 

new information. In such a case, the higher volatility would likely reflect new information, not noise, and 

could therefore be desirable. Another possibility is that narrower spreads, which are also associated with 

greater AT, are related to smaller quoted sizes, so that subsequent trades result in trade prints that 

experience lower trade-by-trade execution costs but result in greater price fluctuations. Such a trade-off 

between liquidity and volatility could be desirable if the benefit of smaller spreads outweighs the potential 

costs of elevated volatility. To control for both possibilities, we add lagged |AR30|, our main efficiency 

measure, and lagged RES, a measure of liquidity and execution costs, to model (7) whenever we estimate 

AT on volatility. By controlling for efficiency and the cost of arbitrage (i.e., execution costs), we hold 

constant price efficiency which likely is the main source of “good” volatility, we find that it does not 

change our inference (coefficients inTable 5 are already based on these augmented regressions). 

Therefore, attributing the elevated volatility associated with more intense AT to faster reflection of news 

or to tighter spreads is difficult.  



25 
 

Is higher AT-induced volatility associated with improved liquidity? Our results suggest that more 

AT is related to better liquidity and greater efficiency but also to greater volatility. If a stock experiences 

these effects on the same trading day they could conceivably offset one another. For example, high-

volatility periods could attract AT, which would then lead to a liquidity improvement. Although we 

cannot fully disentangle these effects and causal directions, we conduct—in addition to the instrumental 

variable approach that we describe in Section 5.C—a simple test that sheds additional light on the 

relationship among AT, volatility, and liquidity. We employ a two-step procedure. In the first step, we 

estimate a cross-sectional regression within each market day, using liquidity, efficiency, and volatility as 

dependent variables, and record the AT coefficients. Doing so produces a time series of daily AT 

coefficients for each market; one set each for liquidity, efficiency, and volatility. These regressions use 

the same controls as those in Tables 3-5, respectively. In the second step, we compute Spearman rank 

correlations between liquidity and volatility effects and then between efficiency and volatility effects . 

Pearson correlations produce identical inferences.  

Panel A of Table 6 reports Spearman rank correlations between AT coefficients for liquidity and 

volatility. All but one of the correlations is positive, and most are significantly so. This means that  on 

days when AT is associated with higher volatility, AT is also contemporaneously related to larger spread. 

Or, conversely, if high volatility indeed attracts algorithmic traders, these traders demand—rather than 

supply—liquidity. Therefore, at least in our sample, the costs of high volatility are not contemporaneously 

offset by greater liquidity, as suggested by Castura, Litzenberger, Gorelick, and Dwivedi (2010).  

In contrast to the relationship between liquidity and volatility, Panel B shows that AT-induced 

high volatility and AT-induced greater efficiency are complements, i.e., days with high efficiency also 

tend to have high volatility. This result is intuitive, because greater efficiency implies faster incorporation 

of news into prices, resulting in greater realized volatility. Because our volatility regressions control for 

the level of efficiency, this observation does not affect our inferences from Panel A. In other words, the 

greater volatility-related efficiency happens on days when liquidity declines.  



26 
 

Taken together, our results indicate that while AT is associated with better informational 

efficiency for most stocks, liquidity improvements are limited to firms in the two largest and the two least 

volatile terciles. In contrast, the negative effects of AT on intraday and realized volatility are significant 

for all firms independent of the market cap, price, or volatility category. Moreover, the higher volatility 

cannot be attributed to more “good” volatility, and traders who induce higher volatility do not appear to 

induce greater liquidity. 

B. Difficult market-making days 

Market-making strategies constitute a prominent subset of algorithmic and HFT strategies (see 

Kirilenko et al., 2014; SEC, 2010). It remains unclear, however, whether and, if so, how their prevalence 

varies over time and across stocks. The algorithmic traders who supply liquidity are not subject to the 

same affirmative obligations that force “traditional” market makers to provide liquidity at all times. The 

absence of such obligations explains regulators’ concerns that the liquidity provided by these strategies is 

less stable over time than that provided by traditional market makers (SEC, 2010). Anand and 

Venkataraman (2015)find that non-traditional (i.e., high-frequency) market makers scale back liquidity 

provision  while traditional market makers provide more liquidity when market conditions are not 

favorable. Their results suggest that the propensity for supplying liquidity without affirmative obligations 

varies over time, depending on the market trading conditions.  

To complement this discussion, we examine how the AT’s associations with liquidity, efficiency, 

and volatility vary under different market conditions. Specifically, we test whether they are different on 

days when market making is more difficult or more costly and try to gauge the magnitude of this effect. 

To identify difficult market-making days, we rely on a simple proxy based on daily returns. Market 

making is easiest when prices do not change and when buyers are as likely to arrive as sellers are. Market 

making is more difficult when a trading day is one-sided. For example, if buyers are more aggressive than 

sellers on a particular day, prices are likely to increase, and market makers are likely to build up a short 

position and end the day with an unusually large loss (either unrealized on a short inventory or realized 

from covering short positions at the prevailing high prices). As these losses reduce capital, increasing 



27 
 

losses make market making more difficult. If the positive return/positive order imbalance day was 

followed by another day with returns and imbalances in the same direction, market-making strategies 

would become even more difficult to operate. Market makers, facing losses for a second day in a row, 

would be even more reluctant to provide liquidity. We identify events where two days experience one-

sided trading in the same direction and define the second day in this pair as a “difficult market making 

day.”  

Specifically, for each stock, we identify all days when the daily return has the same sign as the 

previous day’s return. In addition, we require that the two-day cumulative return exceed the 20-day 

historical mean by at least one standard deviation. This criterion eliminates smaller return episodes that 

likely do not have much effect on liquidity supply. We create a dummy variable, HARD, that is one on 

the second day of these episodes, because we expect market making to be unusually difficult on that day. 

To estimate how AT affects market quality on difficult days, we proceed analogously to our previously 

discussed cross-sectional analyses and expand model (7) by interacting the HARD dummy with AT. 

The results in Table 7 show the mean coefficients for liquidity, efficiency, and volatility effects in 

separate panels. Panel A shows that AT is associated with tighter displayed quotes (RQS) on difficult 

market-making days but that they do not lead to lower execution costs. Instead, AT is associated with 

significantly lower liquidity on difficult market-making days (RES and Amihud). The source of the 

greater execution costs on these days is greater information content, as represented by RPI, implying that 

AT on difficult market-making days is either more informed or provides a stronger inducement to other 

informed traders to trade on these days. We also find that the transient spread component, RRS, decreases 

on difficult market-making days. This finding implies a smaller reward for providing liquidity, consistent 

with liquidity providers withdrawing (or switching to strategies other than market making) on these days. 

The greater information content of trades is consistent with the negative interaction coefficients in Panel 

B. These coefficients imply that AT improves efficiency more on difficult days. If AT is associated with 

more information on difficult days, then it is reasonable that prices become more informative. 
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Panel C presents the AT coefficients for volatility on difficult days. The interaction terms have 

significantly positive coefficients for all measures except the 10- and 30-minute return variances (where 

the interaction coefficients are not significant). For the other five volatility variables, AT is associated 

with substantially higher volatility on difficult days than on regular trading days.  

The magnitudes of the incremental effects (the coefficients on the interaction terms) tend to be 

large relative to the effect on regular days. For example, coefficient of RES is about 25% smaller on 

HARD days than on normal days. For the Amihud ratio, it is about 71% smaller, and the permanent price 

impact is about three times larger. Similarly, compared to normal trading days, on HARD days the 

marginal effect of AT on efficiency and volatility is quite large. 

 Taken together, these results show that the association between AT and market quality are 

different on days when market making is difficult: AT seems to provide less liquidity and brings more 

informed order flow that improves efficiency more, but it also increases execution costs and elevates 

volatility more. These effects are economically large, indicating that AT involves different strategies on 

difficult days than on other days. These differences imply significant changes in how AT affects market 

quality. These results are broadly consistent with the conclusions in Anand and Venkataraman (2015), 

who recommend some trading options (e.g. option to auto-participate) in a hybrid model where AT 

market makers compete with traditional market makers, especially under unfavorable conditions. Our 

analysis suggests that such mechanism can be beneficial if it encourages either type of market maker to 

provide liquidity on HARD days, when presumably it is most needed.  

C. Instrumental variable estimation 

Co-location facilitates AT without directly affecting market quality. We create a time-varying 

dummy variable within each market to indicate the availability, if ever, of co-location. We use this 

dummy as an instrument for AT in a between-markets panel as described in section 4.B. The second-stage 

results in Table 8 are uniformly consistent with the within-market analysis: AT improves market quality 

and efficiency, but elevates short-run volatility. Each of the liquidity measures in Panel A declines as AT 

increases, implying narrower spreads and smaller Amihud price impacts. The efficiency measures in 
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Panel B also decline, likewise implying greater efficiency. Panel C shows that AT increases each of the 

volatility measures.12 

Overall, these estimates mirror the within-market estimates using the original AT variables. 

Importantly, despite the lower power of the IV approach, most estimates remain significant and suggest 

that while AT causally improves liquidity and efficiency, it worsens volatility. Moreover, the market-day 

panel that underlies the estimation in Table 8 is also an important robustness check on the aggregation of 

firm-day panels that we use in the main analysis. We obtain qualitatively identical results with either 

approach, thereby documenting the robustness of our estimates.13  

6. Conclusions 

Quite consistently across the 42 markets in our sample, more intense algorithmic trading (AT) is 

associated with improved liquidity, improved efficiency, and elevated volatility. AT’s effect on volatility 

cannot be attributed to more efficient prices that adjust faster to new information or to the activities of 

liquidity suppliers seeking out more volatile stocks. We use co-location events, which represent 

exogenous shocks to AT, as instruments. This analysis suggests that these effects arise because AT 

causally affects market quality. 

Aside from AT's influence on efficiency, its effects are not uniform across stocks or over time. 

AT has systematically negative effects on the liquidity of small or low-priced stocks, and AT also 

increases volatility more in those stocks. The effects of AT on market quality are not stable over time. In 

                                                       

12 Finally, Panel D presents the IV estimates of the effect of AT on the Ancerno measures of actual institutional 
trading costs. We find a significant decline in the price impact as AT intensity increases. Additionally, in 
untabulated estimations, we repeat the liquidity regressions in Table 3, using Ancerno as an additional liquidity 
measure. We do not report these models because none of them produces a significant coefficient on the AT variable. 
Nonetheless, together with the IV estimation, this finding reinforces our conclusion that AT, on average, enhances 
liquidity for mid-cap and large-cap stocks. The Ancerno price impact results in Table 8 suggest that this inference 
also holds for the passive buy-side investors that constitute Ancerno’s clientele. 
13 Under certain conditions, using a binary variable as an instrument could invalidate the IV estimation. To handle 
this problem, we create a continuous instrument that equals zero before colocation, and otherwise the number of 
days since colocation. This variable definition assumes that AT intensity increases as more time passes since 
colocation. Using this alternative definition leave all main results unchanged. 
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particular, AT provides smaller liquidity benefits on days when market making is more difficult. In 

addition to the main effects of AT on market quality, the nature of time variation in algorithmic traders’ 

propensity to supply liquidity is an important consideration for optimal regulation of AT. 

Overall, our results support prior results that attribute liquidity-enhancing and efficiency-

enhancing effects to algorithmic and HF trading. We complement and qualify these results with evidence 

that AT’s liquidity provision does not apply to all firms and that it actually declines on days when market 

making is unusually costly. Market-making strategies are an important subset of the strategies available to 

algorithmic and high frequency traders. Our results suggest that particularly for the smallest tercile of 

firms, and on days when market making is costly, algorithmic traders’ strategies do not primarily appear 

to focus on market-making strategies. Equally importantly, we show that AT systematically increases 

volatility, thereby imposing costs on most market participants.  
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Table 1. Number of stocks listed on sample markets
This table reports the average number of stocks listed on each exchange by year from 2001 to 2011.

Market 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Change 

2001-2011
% Change 
2001-2011

Argentina 19 55 64 45 61 66 68 57 65 71 65 46 242%
Athens 287 285 287 284 276 263 250 226 219 186 168 -119 -41%
Australia 714 666 921 990 1105 1343 1415 1215 1337 1254 1220 506 71%
Brussels 121 105 124 117 132 132 139 128 139 130 131 10 8%
Copenhagen 154 143 164 169 166 183 207 201 202 193 177 23 15%
Dt Boerse Xetra 239 264 257 264 314 345 377 368 366 381 383 144 60%
Euronext Amsterdam 152 148 139 136 136 138 129 116 114 108 104 -48 -32%
Euronext Lisbon 42 41 41 43 42 40 35 -7 -17%
Euronext Paris 480 462 456 454 567 635 669 611 615 585 575 95 20%
Helsinki 152 149 143 148 147 148 147 141 138 134 129 -23 -15%
Hong Kong 389 419 493 520 549 580 629 701 765 832 802 413 106%
Istanbul 277 286 287 299 305 314 313 307 314 338 359 82 30%
Jakarta 261 253 277 274 267 280 295 185 304 327 347 86 33%
Johannesburg 270 220 230 224 245 263 299 266 257 256 261 -9 -3%
Korea/ Daehan 311 300 667 670 678 703 713 742 711 754 764 453 146%
Kuala Lumpur 692 728 782 824 857 870 855 811 824 829 813 121 17%
London 838 781 821 892 1006 1334 905 799 735 891 736 -102 -12%
Madrid 120 119 110 110 108 116 125 123 120 117 114 -6 -5%
Mexican 69 61 67 66 72 82 81 77 91 97 87 18 26%
Milan 271 280 265 264 280 289 310 281 274 272 264 -7 -3%
Mumbai 240 425 716 821 1077 1161 999 939 1348 1414 1242 1002 418%
NASDAQ 3606 3237 2948 2879 2822 2797 2743 2622 2466 2359 2237 -1369 -38%
NSE (India) 500 542 598 671 750 880 1034 1107 1188 1329 1308 808 162%
New Zealand 55 54 63 77 82 95 74 84 86 69 14 25%
NYSE 1524 1498 1475 1475 1459 1443 1392 1347 1328 1330 1311 -213 -14%
Osaka 183 195 232 242 277 275 263 250 253 252 246 63 34%
Oslo 174 174 164 172 198 206 236 226 218 213 202 28 16%
Philippines 140 112 135 143 153 184 187 162 195 194 205 65 46%
Santiago 81 69 84 84 90 91 92 100 89 100 19 23%
Sao Paulo 306 400 379 385 368 350 44 14%
Shanghai 580 669 742 803 709 716 734 754 821 843 833 253 44%
Shenzhen 459 466 487 516 459 508 596 693 780 1105 1314 855 186%
Singapore 315 326 368 424 472 514 553 525 552 572 545 230 73%
Stockholm 328 315 314 319 345 384 443 462 468 472 467 139 42%
Swiss Exchange 224 218 228 227 235 235 227 227 221 218 213 -11 -5%
Taiwan 518 592 636 667 661 670 676 704 735 755 765 247 48%
Tel-Aviv 310 283 319 342 417 469 528 495 484 480 453 143 46%
Thailand 314 335 363 407 446 466 467 480 480 486 487 173 55%
Tokyo 1957 1996 2072 2205 2310 2371 2360 2289 2284 2286 2261 304 16%
Toronto 614 619 658 712 780 872 930 936 913 915 942 328 53%
Warsaw 137 135 137 179 209 237 307 323 354 366 369 232 169%
Wiener Borse 45 61 53 50 54 61 71 73 68 56 58 13 29%
Column average 473 451 483 504 520 549 555 537 556 571 560 120
Column total 17984 18058 19322 20151 21307 23052 23299 22557 23357 23983 23511 5043
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Market

Median number of 
messages per stock 

in 2001

Median number of 
messages per stock in 

2011
Change 

2001-2011
% Change 
2001-2012

Euronext Amsterdam 41 2762 2721 6635%
Athens 179 25 -154 -86%
Australian 14 19 5 36%
Argentina 17 28 11 67%
Thailand 33 101 68 208%
Mumbai 13 53 40 308%
Brussels 11 156 145 1318%

Copenhagen 7 21 14 200%
Dt Boerse Xetra 54 745 691 1279%
Helsinki 23 94 71 307%
Hong Kong 52 199 147 282%
Istanbul 147 957 810 551%
Johannesburg 13 31 18 138%
Jakarta 17 119 102 600%
Kuala lumpur 31 35 4 13%
Korea/ Daehan 264 932 669 253%

London* 21 122 101 481%
Euronext Lisbon** 59 586 528 902%
Madrid 156 904 748 479%
Milan 108 529 422 392%
Mexican 14 448 435 3219%
NASDAQ 101 5071 4970 4921%
NSE (India) 51 702 651 1276%
NYSE 773 25496 24723 3197%
New Zealand *** 16 17 1 6%
Oslo 18 53 35 192%
Osaka 12 30 18 150%
Euronext Paris 27 83 56 207%
Philippines 6 28 22 367%
Swiss Exchange 20 113 93 465%

Sao Paulo **** 28 153 125 446%
Singapore 33 23 -11 -32%
Santiago *** 5 30 25 505%
Shanghai 504 5331 4827 958%
Stockholm 59 55 -4 -6%
Shenzhen 383 2159 1776 464%
Tokyo 85 453 368 431%
Tel-aviv 6 50 44 733%
Toronto 31 568 537 1731%
Taiwan 326 565 238 73%
Wiener Borse 14 276 262 1870%
Warsaw 11 31 20 182%

Median 30 121 102 412%

* Quote messaged computed based on only price changes because quote sizes are not available until recent ye
** Data begin in 2005.
*** Data begin in 2002.
**** Data begin in 2006.

Table 2. Number of quote-change and trade messages per stock-day

This table reports median messages for each exchange. We count all intraday messages that represent trades 
or changes in the price or size of the best quotes for each stock on all 42 sample markets.
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RQS RES RPI RRS Amihud

Mean coefficient on AT -0.0093 -0.0097 -0.0009 -0.0156 -0.0110
Cross-sectional t-stat -6.69 -3.52 -0.26 -5.37 -6.81
Percent positive 2% 31% 57% 7% 7%
Percent positive and significant 2% 26% 52% 7% 5%

Mean coefficient on AT -0.0119 -0.0109 -0.0019 -0.0194 -0.0104
Cross-sectional t-stat -4.88 -2.26 -0.29 -3.58 -4.17
Mean coefficient on AT*LOW 0.0189 0.0467 0.0371 0.0415 0.0673
Cross-sectional t-stat 4.03 5.91 3.76 6.15 6.36
Mean coefficient on AT*HIGH 0.0016 -0.0035 -0.0031 -0.0002 -0.0060
Cross-sectional t-stat 0.90 -0.93 -0.63 -0.06 -1.96

Mean total effect for LOW 0.0070 0.0359 0.0351 0.0221 0.0569
Cross-sectional t-stat 1.28 3.32 2.43 2.32 4.78
Mean total effect for HIGH -0.0103 -0.0144 -0.0051 -0.0196 -0.0163
Cross-sectional t-stat -7.57 -5.86 -1.78 -7.35 -9.59

Mean coefficient on AT -0.0092 -0.0079 0.0013 -0.0158 -0.0105
Cross-sectional t-stat -5.37 -2.17 0.31 -4.11 -4.66
Mean coefficient on AT*LOW 0.0063 0.0152 0.0174 0.0086 0.0261
Cross-sectional t-stat 1.92 2.96 2.64 1.71 4.20
Mean coefficient on AT*HIGH -0.0010 -0.0050 -0.0049 -0.0020 -0.0047
Cross-sectional t-stat -0.84 -2.26 -1.70 -0.86 -2.31
Mean total effect for LOW -0.0029 0.0072 0.0187 -0.0071 0.0156
Cross-sectional t-stat -0.78 1.15 1.97 -1.19 2.27
Mean total effect for HIGH -0.0102 -0.0129 -0.0036 -0.0178 -0.0152
Cross-sectional t-stat -6.98 -4.98 -1.17 -6.57 -9.20

Mean coefficient on AT -0.0121 -0.0144 -0.0044 -0.0195 -0.0126
Cross-sectional t-stat -8.07 -5.54 -1.40 -6.46 -9.12
Mean coefficient on AT*LOW 0.0029 0.0033 -0.0004 0.0042 0.0033
Cross-sectional t-stat 4.69 3.24 -0.36 3.46 2.21
Mean coefficient on AT*HIGH 0.0097 0.0232 0.0240 0.0162 0.0101
Cross-sectional t-stat 5.78 7.19 7.45 5.21 2.52
Mean total effect for LOW -0.0092 -0.0112 -0.0048 -0.0153 -0.0093
Cross-sectional t-stat -6.08 -4.35 -1.48 -5.70 -5.42
Mean total effect for HIGH -0.0024 0.0088 0.0196 -0.0033 -0.0025
Cross-sectional t-stat -1.11 1.80 3.57 -0.73 -0.60

Panel D. The effect of AT for the smallest and largest volatility terciles

Table 3. The relationship between algorithmic trading and liquidity

Our data cover 42 markets from 2001-2011. We first estimate, for each market, a firm-day fixed effects panel regression. We show 
the mean coefficients across the 42 markets, the associated t-statistic using the cross-market standard deviation, and in Panel A 
additionally the percentage of positive market-specific coefficients. Liquididty measures include time-weighted quoted spread 
(RQS), trade-weighted relative effective spread (RES), permanent price impact (RPI), and temporary price impact (RRS), and 
Amihud.  AT is the negative of dollar trading volume ($100) per message. For message counts, we include all inside quote changes 
and trade messages. Control variables include daily share turnover, intraday price range, 1/price, log market cap, and the first lag of 
the dependent variable, all measured at t-1.  All continuous variables are standardized every day to have a mean of zero and a 
standard deviation of one within each exchange. In Panels B, C, and D we interact AT with two dummy variables, LOW and 
HIGH. In Panel B, the dummies indicate the smallest and largest market cap tercile based on a moving average from the past 20 
trading days. In Panel C, the dummies indicate the smallest and largest share price tercile based on moving average from the past 20 
trading days, and in Panel D the dummies indicate the smallest and largest volatility tercile based on the standard deviation of the 
20 most recent daily returns.

Panel A. Aggregate of market-specific, firm fixed panel regressions 

Panel B. The effect of AT for the smallest and largest market cap terciles

Panel C. The effect of AT for the smallest and largest price terciles
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|AR10| |AR30|

Mean coefficient on AT -0.0126 -0.0042
Cross-sectional t-stat -7.23 -4.01
Percent positive 14% 21%
Percent positive and significant 7% 14%

Mean coefficient on AT -0.0123 -0.0022
Cross-sectional t-stat -3.48 -0.92
Mean coefficient on AT*LOW 0.0063 0.0057
Cross-sectional t-stat 1.76 2.21
Mean coefficient on AT*HIGH -0.0009 -0.0022
Cross-sectional t-stat -0.31 -1.17
Mean total effect for LOW -0.0060 0.0035
Cross-sectional t-stat -1.24 0.89
Mean total effect for HIGH -0.0132 -0.0044
Cross-sectional t-stat -7.74 -4.72

Mean coefficient on AT -0.0100 -0.0020
Cross-sectional t-stat -3.86 -0.97
Mean coefficient on AT*LOW 0.0010 0.0026
Cross-sectional t-stat 0.34 1.01
Mean coefficient on AT*HIGH -0.0034 -0.0029
Cross-sectional t-stat -1.95 -1.67
Mean total effect for LOW -0.0090 0.0006
Cross-sectional t-stat -2.15 0.17
Mean total effect for HIGH -0.0133 -0.0049
Cross-sectional t-stat -8.21 -5.25

Mean coefficient on AT -0.0098 -0.0032
Cross-sectional t-stat -5.20 -2.63
Mean coefficient on AT*LOW -0.0010 -0.0003
Cross-sectional t-stat -0.96 -0.24
Mean coefficient on AT*HIGH -0.0102 -0.0038
Cross-sectional t-stat -7.70 -4.84
Mean total effect for LOW -0.0108 -0.0035
Cross-sectional t-stat -5.49 -2.93
Mean total effect for HIGH -0.0200 -0.0070
Cross-sectional t-stat -9.23 -5.04

Panel D. The effect of AT for the smallest and largest volatility terciles

Table 4.  The relationship between algorithmic trading and informational efficiency

Our data cover 42 markets from 2001-2011. We first estimate, for each market, a firm-day fixed effects panel regression. We show the 
mean coefficients across the 42 markets, the associated t-statistic using the cross-market standard deviation, and in Panel A additionally 
the percentage of positive market-specific coefficients. Efficiency measures are daily observations of the absolute value of intraday 
autocorrelations |AR##|, measured for quote-midpoint returns over 10 and 30 minute periods. AT is the negative of dollar trading volume 
($100) per message. For message counts, we include all inside quote changes and trade messages. Control variables include daily share 
turnover, intraday price range, 1/price, log market cap, and the first lag of the dependent variable, all measured at t-1.  All continuous 
variables are standardized every day to have a mean of zero and a standard deviation of one within each exchange. In Panels B, C, and D 
we interact AT with two dummy variables, LOW and HIGH. In Panel B, the dummies indicate the smallest and largest market cap tercile 
based on a moving average from the past 20 trading days. In Panel C, the dummies indicate the smallest and largest share price tercile 
based on moving average from the past 20 trading days, and in Panel D the dummies indicate the smallest and largest volatility tercile 
based on the standard deviation of the 20 most recent daily returns.

Panel A. Aggregate of market-specific, firm-fixed effects panel regressions 

Panel B. The effect of AT for the smallest and largest market cap terciles

Panel C. The effect of AT for the smallest and largest price terciles
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|Ret| |MktadjRet| Ret^2 MktadjRet^2 PriceRange
Ln(Ret10_V

ar)
Ln(Ret30_V

ar)

Mean coefficient on AT 0.0270 0.0163 0.0182 0.0135 0.0401 0.0216 0.0295
Cross-sectional t-stat 7.65 5.00 6.67 5.21 8.52 4.25 5.17
Percent positive 86% 83% 86% 86% 83% 76% 81%
Percent positive and significant 81% 79% 81% 76% 83% 71% 79%

Mean coefficient on AT 0.0323 0.0163 0.0201 0.0117 0.0519 0.0320 0.0395
Cross-sectional t-stat 6.49 2.90 4.86 2.52 8.17 4.17 4.60
Mean coefficient on AT*LOW 0.0174 0.0192 0.0131 0.0116 0.0236 0.0232 0.0229
Cross-sectional t-stat 2.38 2.76 1.97 1.76 2.76 2.84 2.50
Mean coefficient on AT*HIGH -0.0069 -0.0017 -0.0032 0.0008 -0.0154 -0.0121 -0.0115
Cross-sectional t-stat -1.53 -0.39 -0.93 0.21 -3.02 -1.89 -1.56
Mean total effect for LOW 0.0497 0.0354 0.0332 0.0233 0.0755 0.0552 0.0625
Cross-sectional t-stat 6.14 3.79 4.87 2.94 7.54 5.04 5.53
Mean total effect for HIGH 0.0254 0.0145 0.0170 0.0125 0.0365 0.0199 0.0280
Cross-sectional t-stat 7.05 4.68 6.28 5.05 7.94 3.98 4.92

Mean coefficient on AT 0.0280 0.0155 0.0194 0.0137 0.0414 0.0215 0.0284
Cross-sectional t-stat 6.90 3.72 6.61 4.61 7.80 3.47 4.25
Mean coefficient on AT*LOW 0.0175 0.0150 0.0098 0.0080 0.0219 0.0214 0.0226
Cross-sectional t-stat 4.64 4.15 3.52 2.86 4.16 4.10 4.07
Mean coefficient on AT*HIGH -0.0040 -0.0012 -0.0038 -0.0021 -0.0050 -0.0011 0.0000
Cross-sectional t-stat -1.79 -0.48 -2.48 -1.29 -2.15 -0.29 0.01
Mean total effect for LOW 0.0454 0.0304 0.0292 0.0217 0.0633 0.0429 0.0510
Cross-sectional t-stat 7.34 4.86 6.16 4.62 7.88 4.77 5.37
Mean total effect for HIGH 0.0240 0.0143 0.0156 0.0116 0.0364 0.0204 0.0284
Cross-sectional t-stat 7.42 4.97 6.33 4.92 8.48 4.16 5.10

Mean coefficient on AT 0.0173 0.0086 0.0123 0.0084 0.0287 0.0086 0.0138
Cross-sectional t-stat 4.71 2.45 4.30 3.08 6.16 2.05 2.84
Mean coefficient on AT*LOW 0.0051 0.0004 0.0003 -0.0021 0.0080 0.0185 0.0203
Cross-sectional t-stat 2.34 0.21 0.22 -1.66 2.93 6.05 5.72
Mean coefficient on AT*HIGH 0.0373 0.0376 0.0295 0.0312 0.0405 0.0189 0.0269
Cross-sectional t-stat 8.56 9.60 9.07 10.52 8.11 5.65 7.00
Mean total effect for LOW 0.0224 0.0090 0.0127 0.0062 0.0367 0.0271 0.0341
Cross-sectional t-stat 5.33 2.45 4.37 2.53 6.61 4.30 4.76
Mean total effect for HIGH 0.0546 0.0462 0.0418 0.0396 0.0692 0.0275 0.0407
Cross-sectional t-stat 10.37 8.88 10.11 9.34 10.43 4.93 6.30

Panel D. The effect of AT for the smallest and largest volatility terciles

Table 5. The relationship between algorithmic trading and short-term volatility

Our data cover 42 markets from 2001-2011. We first estimate, for each market, a firm-day fixed effects panel regression. We show the mean 
coefficients across the 42 markets, the associated t-statistic using the cross-market standard deviation, and in Panel A additionally the percentage of 
positive market-specific coefficients. Volatility measures include |Ret|, |MktadjRet|, Ret^2, MktadjRet^2, the daily price range standardized by the daily
closing price, and Ln(Ret##_Var), the log of the daily averages of the variances of 10-minute and 30-minute quote midpoint returns, respectively.  AT 
is the negative of dollar trading volume ($100) per message. For message counts, we include all inside quote changes and trade messages. Control 
variables include daily share turnover, 1/price, log market cap, |AR30|, and the first lag of the dependent variable, all measured at t-1.  All continuous 
variables are standardized every day to have a mean of zero and a standard deviation of one within each exchange. In Panels B, C, and D we interact 
AT with two dummy variables, LOW and HIGH. In Panel B, the dummies indicate the smallest and largest market cap tercile based on a moving 
average from the past 20 trading days. In Panel C, the dummies indicate the smallest and largest share price tercile based on moving average from the 
past 20 trading days, and in Panel D the dummies indicate the smallest and largest volatility tercile based on the standard deviation of the 20 most 
recent daily returns.

Panel A. Aggregate of market-specific, firm-fixed effects panel regressions

Panel B. The effect of AT for the smallest and largest market cap terciles

Panel C. The effect of AT for the smallest and largest price terciles
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PriceRange

RQS 0.01 0.01 * 0.01 * 0.02 ** 0.04 *** 0.10 *** 0.08 ***

RES 0.05 *** 0.06 *** 0.05 *** 0.05 *** 0.08 *** 0.14 *** 0.11 ***

Amihud 0.06 *** 0.03 *** 0.05 *** 0.04 *** -0.02 0.02 0.02

|AR10| -0.06 *** -0.04 *** -0.04 *** -0.03 *** -0.10 *** 0.04 ** -0.09 ***

|AR30| -0.02 *** -0.02 *** -0.02 *** -0.01 *** -0.05 *** 0.01 0.01

Panel A. the cross-sectional correlation between AT's effect on volatility and on liquidity

Panel B. The cross-sectional correlation between AT's effects on volatility and efficiency

Table 6. Correlation between AT coefficients in liquidity and volatility regressions

Our data cover 42 markets from 2001-2011. We first estimate, for each market, a daily time series of cross-sectional coefficients. We 
regress liquidity, efficiency, and volatility measures on AT and controls.  Liquidity measures include time-weighted quoted spread (RQS), 
trade-weighted relative effective spread (RES), permanent price impact (RPI), temporary price impact (RRS), and Amihud. Efficiency 
measures are daily observations of the absolute value of intraday autocorrelations |AR##|, measured for quote-midpoint returns over 10 
and 30 minute periods. Volatility measures include |Ret|, |MktadjRet|, Ret^2, MktadjRet^2, the daily price range standardized by the daily 
closing price, and Ln(Ret##_Var), the log of the daily averages of the variances of 10-minute and 30-minute quote midpoint returns, 
respectively.  AT is the negative of dollar trading volume ($100) per message. For message counts, we include all inside quote changes 
and trade messages. Control variables include daily share turnover, 1/price, log market cap, and the first lag of the dependent variable, all 
measured at t-1. Regressions where the dependent variable is volatility do not include price range, but add RES and |AR30|. |AR30| is the 
absolute value of intraday autocorrelations measured for quote-midpoint returns over 30-minute periods.  All continuous variables are 
standardized every day to have a mean of zero and a standard deviation of one within each exchange. This table reports the mean spearman 
rank correlation between AT coefficients from the  regressions of volatility and liquidity (Panel A) and between the AT coefficients from 
the regressions of volatility and efficiency (Panel B). *, **, *** indicate significance at 10%, 5% and 1%, respectively.

|ret| |mktadjRet| Ret^2 MktadjRet^2 Ln(Ret10_Var) Ln(Ret30_Var)
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RQS RES RPI RRS Amihud
Mean coefficient on AT -0.0085 -0.0104 -0.0048 -0.0135 -0.0140
Cross-sectional t-stat -5.85 -3.78 -1.42 -4.72 -6.92
Mean coefficient on AT*HARD -0.0033 0.0026 0.0141 -0.0077 0.0100
Cross-sectional t-stat -3.92 3.22 7.57 -4.87 5.37
Mean total effect on HARD days -0.0118 -0.0079 0.0093 -0.0212 -0.0039
Cross-sectional t-stat -8.68 -2.74 2.28 -6.55 -2.27

|AR10| |AR30|
Mean coefficient on AT -0.0115 -0.0035
Cross-sectional t-stat -6.38 -3.21
Mean coefficient on AT*HARD -0.0041 -0.0026
Cross-sectional t-stat -4.23 -3.42
Mean total effect on HARD days -0.0156 -0.0061
Cross-sectional t-stat -8.78 -5.51

|ret| |mktadjRet| Ret^2 MktadjRet^2 PriceRange
Ln(Ret10_

Var)
Ln(Ret30_

Var)
Mean coefficient on AT 0.0208 0.0083 0.0120 0.0063 0.0368 0.0217 0.0293
Cross-sectional t-stat 5.84 2.68 4.78 2.89 7.79 4.11 4.99
Mean coefficient on AT*HARD 0.0224 0.0292 0.0229 0.0263 0.0112 -0.0007 0.0005
Cross-sectional t-stat 4.54 6.84 5.82 6.85 4.09 -0.33 0.23
Mean total effect on HARD days 0.0432 0.0374 0.0349 0.0326 0.0481 0.0210 0.0298
Cross-sectional t-stat 8.04 7.31 7.70 7.12 9.17 4.24 5.20

Table 7. The effect of algorithmic trading when market making is difficult

Our data cover 42 markets from 2001-2011. We first estimate, for each market, a firm-day fixed effects panel regression. We 
show the mean coefficients across the 42 markets, and the associated t-statistic using the cross-market standard deviation. 
Market quality measures include time-weighted quoted spread (RQS), trade-weighted relative effective spread (RES), 
permanent price impact (RPI), temporary price impact (RRS), and Amihud. Efficiency measures include daily observations of 
the absolute value of intraday autocorrelations |AR|, measured for quote-midpoint returns over 10 and 30 minute periods. 
Volatility measures include |Ret|, |MktadjRet|, Ret^2, MktadjRet^2, the daily intraday price range standardized by the daily 
closing price, and Ln(Ret##_Var), the log of the daily averages of the variances of 10-minute and 30-minute quote midpoint 
returns, respectively. AT is the negative of dollar trading volume ($100) per message. For message counts, we include all 
inside quote and trade messages. Control variables include daily share turnover, 1/price, intraday price range, log market cap,  
and the first lag of the dependent variable, all measured at t-1. Regressions where the dependent variable is volatility do not 
include price range, but add RES and |AR30|. |AR30| is the absolute value of intraday autocorrelations measured for quote-
midpoint returns over 30-minute periods. All continuous variables are standardized every day to have a mean of zero and a 
standard deviation of one within each exchange. We create a variable HARD that indicates days on which market making is 
difficult for a particular stock. Using daily returns, the HARD dummy equals one if a daily return has the same sign as the 
return on the previous day, and the absolute value of the 2-day return is at least one standard deviation larger than the 20-day 
trailing average of returns for that stock. We interact AT with the HARD dummy in the regression.

Panel A. Difficult market-making days and the effect of AT on liquidity

Panel B. Difficult market-making days and the effect of AT on informational efficiency

Panel C. Difficult market-making days and the effect of AT on volatility
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Dependent variable AT coefficient t

RQS -0.0231 -4.06
RES -0.0454 -7.12
RPI -0.0104 -1.30
RRS -0.0972 -11.07
Amihud -0.0027 -0.32

Dependent
|AR10| -0.0409 -4.00
|AR30| 0.0102 0.99

PriceRange 0.0595 9.99
ln(Ret10_Var) 0.0760 15.62
ln(Ret30_Var) 0.0931 16.79
|Ret| 0.0659 9.16
|MktAdjRet| 0.0364 5.11
Ret^2 0.0456 5.93
MktAdjRet ^2 0.0231 2.89

mshortO -0.013 -1.10
msvwO -0.024 -1.95
mdvwO -0.024 -1.95

Panel D. Ancerno institutional price impact

Table 8. Instrumental variable estimation of the effect of algorithmic trading

For each day, we aggregate all variables within each market by forming market-value-weighted averages 
across firms. We estimate a two-way panel across markets and days using a generalized instrumental 
variable approach. AT, the negative of dollar trading volume (in $100) per message, is a proxy for 
algorithmic trading. As an instrument for algorithmic trading we use colocation, a market-specific dummy 
that switches on once that market officially or at least publicly, for the first time, allows or facilitates 
colocation for trading firms. Market quality measures include time-weighted quoted spread (RQS), trade-
weighted relative effective spread (RES), permanent price impact (RPI), temporary price impact (RRS), 
Amihud, |AR10|, and |AR30|, and volatility measures include |Ret|, |MktadjRet|, Ret^2, MktadjRet^2, the 
intraday price range standardized by the daily closing price, and Ln(Ret##_Var), the log of the average 
variances of 10-minute and 30-minute quote midpoint returns, respectively. Execution short falls include 
average shortfall ( mshortO), shared weighted average shortfall (msvwO), and dollar weighted average 
shortfall (mdvwO), benchmarked on opening price.  Control variables include daily share turnover, intraday 
price range, 1/price, log market cap, and the first lag of the dependent variable, all measured at t-1. Price 
range is not included in regressions where the dependent variable is volatility. The sample period is from 
2005 to 2011 to maintain a balanced panel where all markets are present in the data. 

Panel A. Liquidity

Panel B. Efficiency

Panel C. Volatility (controlling for lag RES and lag|AR|
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Figure 1. Messages and AT
We count all intraday messages that represent trades or changes in the price or size of the best quotes for each stock. Panel A reports the time 
series of messages. Panel B reports the time series of AT computed as the negative of dollar trading volume ($100) per message. Then we 
compute equally weighted means for each market month, and then compute the mean across markets.
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Figure 2. Market quality measures over time

Panel A reports the time series of spreads. RQS are time weighted relative quoted spreads (RQS), RES are relative 
effective spreads, RRS are 5-minute relative realized spreads, and RPI are 5-minute permanent price impacts.  Panel B 
reports the time series of price efficiency. |AR10| (AR|30|) is the absolute value of the daily average 10-minute (30-
minute) quote-midpoint return autocorrelations. We omit overnight returns and periods without price changes. Panel C 
reports the time series of volatility measures including |Ret|, Ret^2, the daily intraday price range standardized by the 
daily closing price, and  the variances of 30-minute quote midpoint returns (Ret30_Var), respectively. All measures are 
computed intraday for each stock. Then we compute the mean for each day, and then the mean for each market month. 
The figures report the mean across markets.
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Country MKT Earliest colocation date Link (as of September 2013)
Australia AX 200811 http://www.asxgroup.com.au/media/PDFs/mr030708_co-location_hosting.pdf

Belgium BR 200804 https://europeanequities.nyx.com/sites/europeanequities.nyx.com/files/327777.pdf

Brazil SA 20090629 http://ir.bmfbovespa.com.br/enu/1190/NMCoLocation.pdf

Canada TO 200811 http://www.investorpoint.com/stock/X%253ACA-TMX+Group+Limited/news/6495414

Denmark CO 20080625 http://www.ft.com/intl/cms/s/0/b2cde4f0-42ce-11dd-81d0-0000779fd2ac.html#axzz2RRv89HWs

Finland HE 20080625 http://www.ft.com/intl/cms/s/0/b2cde4f0-42ce-11dd-81d0-0000779fd2ac.html#axzz2RRv89HWs

France PA 200804 https://europeanequities.nyx.com/sites/europeanequities.nyx.com/files/327777.pdf

Germany DE 2006Q4
http://deutsche-
boerse.com/dbg/dispatch/en/listcontent/gdb_navigation/press/10_Latest_Press_Releases/Content_Files/13_press/August_2006/pm_news_Proximity_090806.htm?newstitle=deutscheboer
sesystemsandixeuro&location=press

India BO 20101115 http://www.business-standard.com/article/markets/bse-s-co-location-facility-begins-to-get-brokers-111012000030_1.html

India NS 200908 http://www.nseindia.com/circulars/circular.htm

Italy MI 200909 http://www.borsaitaliana.it/borsaitaliana/ufficio-stampa/comunicati-stampa/2008/081110avviotradelect.en_pdf.htm

Japan OS 200811 http://www.ose.or.jp/e/news/14734

Japan T 200905 http://www.tse.or.jp/english/rules/equities/arrowhead/info.html

Netherlands AS 200804 https://europeanequities.nyx.com/sites/europeanequities.nyx.com/files/327777.pdf

Portugal LS 200804 https://europeanequities.nyx.com/sites/europeanequities.nyx.com/files/327777.pdf

Singapore SI 201104 http://www.sgx.com/wps/wcm/connect/sgx_en/home/higlights/news_releases/news+update+sgxs+reach+trading+engine+goes+live

Sweden ST 20080625 http://www.ft.com/intl/cms/s/0/b2cde4f0-42ce-11dd-81d0-0000779fd2ac.html#axzz2RRv89HWs

Switzerland S 20080624 http://www.six-swiss-exchange.com/swx_messages/online/swx_message_200901161725_en.pdf

Taiwan TW 2010Q4 http://asiaetrading.com/taiwan-stock-exchange-to-launch-co-location-services/

UK L 200809 http://www.londonstockexchange.com/about-the-exchange/media-relations/press-releases/2008/launchofexchangehostingcreatessub-millisecondaccesstoitsmarkets.htm

USA NASDAQ 200504 http://www.wallstreetandtech.com/electronic-trading/data-latency-playing-an-ever-increasing/199702208

USA NYSE 201008 http://www.ft.com/intl/cms/s/0/2d62bcfa-ad26-11de-9caf-00144feabdc0.html#axzz2RRv89HWs

Appendix: Dates of the first co-location implementation across markets
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